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S T U D Y  O F  S P A C E - T I M E  I M P U R I T Y  D I S T R I B U T I O N S  

U S I N G  A " L U M P E D - C A P A C I T A N C E "  S C H E M E  

A. I. Filippov and O. I. Korkeshko UDC 532.546 

New problems of  convective diffusion are considered in a "lumped-capacitancd' approximation. Analytical 

solutions are obtained for cases of  axisymmetric radial f low of  liquids with impurities. Results o f  calculations 

as applied to ecology have revealed trends in the distributions of  harmful  impurities in groundwater flows. 

Exacerbation of the ecological situation makes it necessary to solve some important problems of engineering 

physics connected with the development of simplified mathematical  models for integration of measured 

concentrations of harmful impurities and for calculation of their space-time distributions. 

Impurity concentrations change as a result of such processes as diffusion, convective mass transfer, etc. 

Theoretical studies of convective diffusion lead to a system of equations including continuity, Navier-Stokes, and 

energy equations, and the equation of state of the impurity. It is very difficult to imagine a general system of 

equations in a specific statement. Therefore, various kinds of simplifying assumptions are used for solution of such 

problems. One-dimensional problems of convective diffusion are solved most easily [ 1-3 ]. 

In what follows we consider two-dimensional axisymmetric problems in a cylindrical coordinate system that 

describe impurity propagation in a horizontal bed with a flow of water or some other liquid with impurities and in 

the environment. For simplification of convective diffusion problems we used the lumped-capacitance method that 

was developed earlier for thermal-physics problems. The essence of the method consists in isolation of areas with 

slightly changing concentrations along one or several coordinates and substitution of average values of the unknown 

parameter for this parameter in these areas. For the concentration of a compound in a bed and in the rocks 

surrounding it, the condition of equality is postulated at the contact area. In the present case it is assumed that in 

liquid flow in a porous medium the impurity concentration Cim depends only on the horizontal distance r and is 

independent of the vertical coordinate z ((Cim)'z ffi 0, (cim)zz) ffi 0. 

In the problems i: is assumed that the concentrations of impurities in the porous skeleton of the medium 
and in the incompressible solution that saturates the medium are equal [4-6 ]. 

The equation of mass balance of the impurity in the part of the bed located between two cylindrical coaxial 

surfaces r - r + dr, 2h in height, contains the increment of the amount of material in the volume element considered 

O (mis i P f i )  
d M  i = 2Jrr2h #t drd t ,  

and changes in the amount of material due to convection 
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the  diffusive f low through planes  of the bed z = h and z = - h  

[ I O(m2is2iP2ic2i) l ]  O (mliSliPh.Cli) _ D2i 
dM3i = 27tr Dli Oz z=h Oz z=-h drd t ,  

mass exchange between the porous skeleton and liquid 

O (rasiSsi Psfsi)  
dM4i = - 2~r2h Ot drdt 

and  the presence  of concent ra t ion  sources.  Final ly ,  we obtain an equat ion for descr ipt ion of the impuri ty 

concentration in liquid flow in a porous medium: 
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+ 
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It is assumed that the densities of the i-th component in the bed, medium, and skeleton, the porosity,  

saturation, and the diffusion coefficients are constant and that there are no concentration sources. With the notation 

D1 i m I i s l  i P 1 i D2im2is2i  P 2i Qi 
61i = 2misiPih ; ~2i = 2misiPih ; Bi - 4~rh 

Eq. (1) takes the form 

rr l Bi oci I  c2, I or) 7 + al - z ,=h-  a2i--   ,=-h 
msiSsi Psi OCsi 

misi Pi dt " 
(2) 

We will only consider problems for a single impurity species (mo = m, ml -- I - m, sl = 1). The  last term 

in Eq. (2) describes adsorption of the impurity on the porous skeleton. Its contribution is thoroughly investigated 

in [4 ]. In what follows, for simplic!ty it is assumed that mass exchange between the skeleton and liquid is ra ther  

rapid. This assumption is satisfied at low liquid velocities. In the case of a single impurity,  its concentrat ions in the 

porous skeleton and in the liquid are assumed to be equal. Indeed,  in real porous clay beds, the contact surface 

area is 105 m 2 per 1 m 3. If we imagine this surface to be rolled as a thin layer, its thickness will be 10 -5  m. 

According to the Fourier  number  D t / h  2 = 1, it is possible to estimate the time of mass exchange between the liquid 

and porous skeleton. The  diffusion coefficients for liquids in liquid media are of the order  of magnitude of l0 -9  

m2/sec,  and,  consequently,  the order  of magnitude of t is 0.1 sec. As one can see, mass exchange between the 

liquid and skeleton occurs ra ther  rapidly. In view of the above, Eq. (2) is written as 

O - t =  r ~r  ~ Or} r -~r + a l -~z z = h -- a z W l z = - h " 
(3) 

With radial  diffusion along the coordinate r neglected at high liquid velocities in the bed, Eq. (3) is 

t ransformed to the form 

0c B Oc Oc 1 0c2[ 
Ot r Or + 61 - 62 [ z " (4) -- Oz z=h ~ = - h  

Now, we consider some concrete problems. Let water with an impurity whose concentrat ion is equal at any  

point in a selected cross-section penetrate into an infinitely long horizontal bed. A constant concentrat ion co of the 

impurity is maintained in the liquid entering the bed at r = r 0. A diffusive impurity flow through the boundaries  of 
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the bed to the medium surrounding the bed is observed and in this medium the harmful impuri ty  is dissipated only 

by diffusion. With the assumption that the physicochemical properties of the surrounding rocks are equal, i.e., D1 

D2, Cl " c2, 6 - 61 + 62, we consider diffusion in the half space z > 0. The  plane z -- 0 is assumed to be a boundary  

of the bed. 

In this case the mathematical s tatement of the problem has the form: 

Oc I 0 2 C l  
= a - - -  ~ ,  t > O ,  z > O ;  

Ot Oz 

Oc B oc oq l 
- , r > O ,  t > O ;  

at r Or + 6 Oz I z=o 

c l l z - , = , = 0 ;  c l l t = o = O ;  Cir=ro=Co;  c = q l z = O ;  c l t=o  = 0 .  

With the use of the Lap lace -Carson  transformation, it is possible to obtain solution of the system in the space of 

the transforms 

r - ) 6  
c t  c0exp  - 2B p exp - p v r ' ~ a  (r2 2 = " + Z  . 

Inversion of the transform makes it possible to restore the initial concentration distribution function in the 

environment 

( I( 
2B ) 

Inclusion of the difference in the physicochemical properties of the surrounding rocks leads to consideration 

of the impurity distribution in the half-spaces z > h and z < - h :  

Oc I 02Cl 
t > O ,  z > h ;  - - a l  2 ' 

Ot Oz 

0c 2 02c2 
= a 2  2 ' t > 0 ,  z <  - h ;  

Ot Oz 

Oc B Oc Ocl I 
Ot - r Or + 61-~z Iz=h 

- 6 ,  0c21 r > 0 
" Oz Iz=-h 

t > O ,  Izl < h;  

c l l l z l - , ~ = 0 ;  c l l t = 0 = 0 ;  c 2 [ I z l ~ = 0 ;  c 2 l t = 0 = 0 ;  

CJr=ro=CO ; c=Cl[z=h-- - -CZ[z=-h;  c l t = 0 : 0 -  

The concentration distribution function in the transforms has the form 

t 
C 1 = c o exp 

2 rt ~ r - r 0 di I 62 z - h 
p exp - + + 2. [-ST-. 
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t 
C 2 = c o exp 

22) 
r - r 0 P exp 
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( Fr' 
The obtained analytical  solutions are written as 
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Inclusion of radial  diffusion makes the problem more  complicated. If the physicochemical propert ies  of the 

rock surrounding the bed are assumed to be identical, for the half space z > 0 we obtain the sys tem of equations 

oc, _a[ _o rr oc, / 
Ot Or ~ -~r ) "-~-z2 J 

, r > 0 ,  t > 0 ,  z > 0 ;  

OC B Oc 0C1[ , r > 0 ,  t > 0 ;  
Ot - r Or + ~ 0"--~-[z=0 

lira c I = 0 ;  c l i t = 0 = 0 ;  C l r = O = c O ;  c = c  l l z = O ;  c lt=o=O" 
z-k- r-.~ r 

For  so lu t ion  of the  f o r m u l a t e d  p rob l em,  a p a r t  f rom the L a p l a c e - C a r s o n  t r ans fo rma t ion ,  Hunke l  

t ransformat ion in r is also used. The  inverse a Hunkel  t ransformat ion makes  it possible to obtain the concentra t ion 

distribution function in the space of the t ransforms 

0 

It is very difficult to find the integral of this equation, but it is possible to obtain its particular solution at p -~ 0, 

which corresponds to a s teady-s ta te  concentration distribution. Assuming p -- 0, we obtain the distr ibution function 

in the environment  

r coB ~ Jo (sr)exp ( - s  (z + B/6)) ds = coB 
0 ~/ (B + 6z) 2 + r2~ 2 

Considerat ion of the differences in the physicochemical properties of the surrounding rocks with al lowance 

for radial  diffusion in the plane perpendicular  to the z-axis leads to the problem: 

. . . .  a 1 - -  r + r > 0  t > 0  z > h "  
Ot Or Or) Oz2 J . . . .  

- a  2 - -  r + , r > 0 ,  t > 0 ,  z< - h ;  
Ot Or ~ Or) 
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OC B Oc OCl I - t ~ 2 0 c 2 [  , r > O ,  t > O ,  
Ot - r Or + 61 "~z z=h O---z[z=-h Izl < h;  

lira c t = O ;  C l [ t = o = O ,  l ira c 2 = 0 ;  c 2 [ t = o = O  ; 
Izl+r-*~ Izl +r-~o= 

Clr=o=Co;  c = q l z = h = c 2 l z = - h ;  c l t = o = O .  

For t ransformed functions in the half-spaces z > h and z < - h ,  the following expressions are obtained: 

t ~ Jo ( s r ) exp  ( -  X/s 2 + p / a  1 ( z -  h)) x C 1 = c O 
o 

xexp/_  /x 
o p + 61 ~/s  2 + p / a  I + 6 2 ~] s 2 + p / a  2 

a s  
x ds ; 

p + 61~l s 2 + p / a l  + 62 ~1s 2 + p /a2  

t 7 Jo ( s r ) exp  (X / s 2 +  p / a  2 (z + h)) x C 2 = c O 
o 

i s ) x exp _ f Bsds . x 
0 p + t31 ~] S2 + p / a l  + ~2 x/s2 + P / a 2  

a s  
x ds .  

P + (~l ~/ $2 + P /a l  + ~2 x~ s2 + P/a2  

It is difficult to find this integral, however a particular solution for p -,  0 can be given. Concentrat ions in half-spaces 

z > h and z < - h  are expressed as: 

co B 
C 1 = 

'~/ [B + (t~ 1 + t32) (7, -- h ) ] 2  + r 2 (~l  + t~2) "2" 

C 2 = 
co B 

X/ [ B -  (61 + 6 2 ) ( z + h ) 1 2 + r  2(61 +62)2- 

Application of the "lumped-capacitance" approach to problems of convective diffusion gives analytical 

formulas for space-time concentration distributions of harmful impurities in the cases of complicated geometries for 

which visible solutions could not be constructed earlier. These  formulas were used to calculate concentrat ion 

distributions and graphs are presented for acetone dissolved in water surrounded by argillaceous beds. The  program 

is wri t ten in Turbo  Pascal for IBM-compatible PCs. We investigated the impurity concentrat ion distribution 

functions in a water flow c = c(r) at z = 0 and in surrounding clays c = c(z) for different times�9 The  calculations 

were carried out for liquid discharges Q = 5, 10, 25, and 50 m3/day  and for flow thicknesses h = 1, 5, and 10 m. 

The  vertical distribution c = c(r) is plotted for three distances from the concentrat ion source r = 0.1, 0.5, 

and 1 m. As can be seen from Fig. 1, for long periods of time the space-time distributions almost coincide, i.e., the 

liquid discharge and the flow thickness do not have a marked effect on diffusion. The  space-time concentration 

distributions depend on these quantities only over short time periods. As time passes, at z = 0 for the various 

distances r the concentrat ion of acetone tends to the limiting value co. 
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Fig. 1. Plot of impurity concentration versus coordinate z for fixed distance 

from source (r = I m): 1) 50 h, 2) 100, 3) 250, 4) 500, 5) 750, 6) 1250; a) 

liquid discharge Q = 5 ma/day ,  thickness of bed h = 5 m; b) 50 and 10. z, m. 

Fig. 2. Radial impurity concentration distributions for various times: l) 0.1 

h, 3) 0.2, 3) 0.5, 4) l ,  5) 2, 6) 4, 7) 6; a) liquid discharge Q = 25 ma /day ,  

thickness of bed h = 1 m; b) 10 and 5. r, m. 

Plots of the radial concentration distribution c = c(r) are given in Fig. 2. One can see from the figure that  

as time passes, the impurity front moves from the coordinate origin at a velocity that depends on Q and h. The  

front is smeared due to diffusion mass transfer  to the medium surrounding the flow. From calculations it is possible 

to estimate the radial dimension of the region of the front in which a noticeable contribution of mass t ransfer  is 

observed. For example, for t = 6 h at distance r = 1 m, the length of the zone is 0.2 m and smearing occurs at a 

distance of 0.1 m with changes in the concentration by at most 0.9 of c 0. As time passes, the front becomes more 

and more smeared due to diffusive flow to the surrounding medium. 

Analytical formulas for the concentrations of harmful impurities obtained by the "lumped-capacitance" 

scheme can be used to plot the space-time distribution functions of the impurity and to solve particular inverse 

problems. Solution of convective diffusion problems opens new prospects for development of devices for monitoring 

the conditions of the environment.  

N O T A T I O N  

rrti, porosity for i-th component of impurity; msi = 1 - mi; si, ssi, saturation of the bed and porous skeleton 

with i-th component;  Pi, Pli ,  P2i, Psi, densities of i-th component in bed, half spaces z > h and z < - h ,  and in the 

porous skeleton; ci, Cli, c2i, Csi, respective concentrations; D i ,  D l i  , D2 i  , diffusion coefficients in bed and half spaces; 

Cim , concentrat ion in liquid flow; Qi, discharge of i-th component; qi, density of concentrat ion sources; J0(x) ,  

f i rs t -order  Bessel function; ai = D i /  m i s i ;  erfc (x) = ( 2 / C E ) f  e x p ( - u  Z)du; I ( t ) ,  unit Heaviside function. 
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